Training Generative Adversarial Networks from Incomplete Observations using Factorised Discriminators

Daniel Stoller¹, Sebastian Ewert², Simon Dixon¹

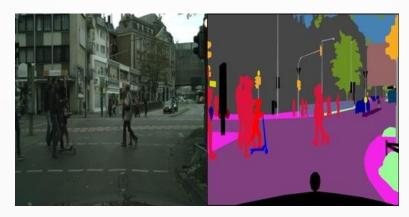
¹ Queen Mary University of London

² Spotify Berlin

ICLR 2020

Motivation

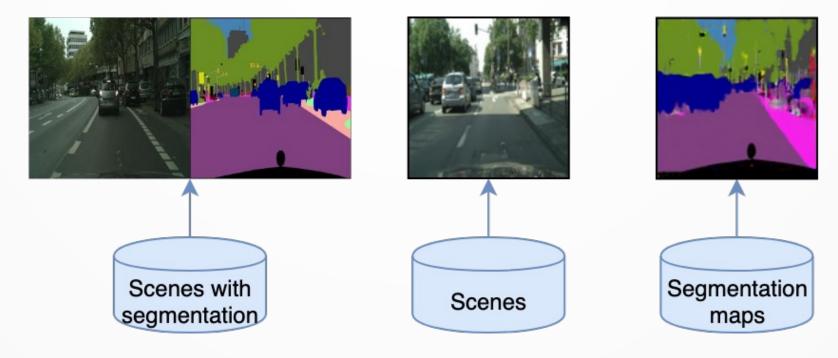
- GANs for generation and prediction tasks
- Assumption: Sample can be naturally divided into multiple parts
- Example: Image segmentation:



Sample
$$x = (x^1, x^2)$$

Motivation

How to exploit additional data?



(Conditional) GANs need full samples for training

$$\frac{p(\mathbf{x}^2|\mathbf{x}^1)}{q(\mathbf{x}^2|\mathbf{x}^1)}$$

Factorisation of density ratio:

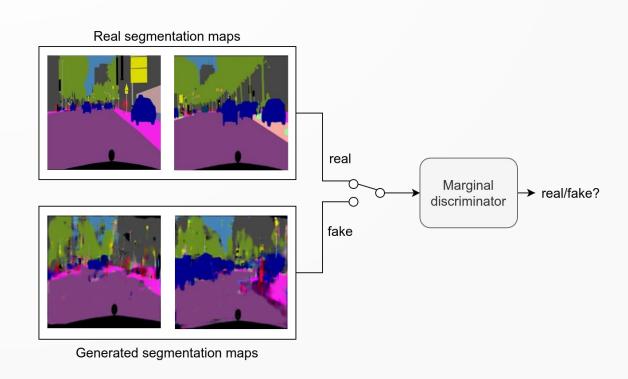
$$\frac{p(\mathbf{x}^2|\mathbf{x}^1)}{q(\mathbf{x}^2|\mathbf{x}^1)} = \frac{c_P(\mathbf{x}^1, \mathbf{x}^2)}{c_Q(\mathbf{x}^1, \mathbf{x}^2)} \frac{p(\mathbf{x}^2)}{q(\mathbf{x}^2)}$$

Marginal discriminator

Factorisation of density ratio:

$$\frac{p(\mathbf{x}^2|\mathbf{x}^1)}{q(\mathbf{x}^2|\mathbf{x}^1)} = \frac{c_P(\mathbf{x}^1, \mathbf{x}^2)}{c_Q(\mathbf{x}^1, \mathbf{x}^2)} \frac{p(\mathbf{x}^2)}{q(\mathbf{x}^2)}$$

Marginal discriminator



Factorisation of density ratio:

$$\frac{p(\mathbf{x}^2|\mathbf{x}^1)}{q(\mathbf{x}^2|\mathbf{x}^1)} = \frac{c_P(\mathbf{x}^1, \mathbf{x}^2)}{c_Q(\mathbf{x}^1, \mathbf{x}^2)} \frac{p(\mathbf{x}^2)}{q(\mathbf{x}^2)} \text{ with}$$

$$c_P(\mathbf{x}^1, \mathbf{x}^2) = \frac{p(\mathbf{x}^1, \mathbf{x}^2)}{p(\mathbf{x}^1)p(\mathbf{x}^2)}$$

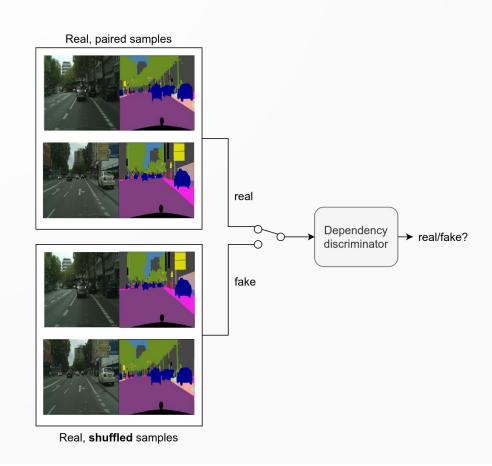
- Marginal discriminator
- Dependency discriminators

Factorisation of density ratio:

$$\frac{p(\mathbf{x}^2|\mathbf{x}^1)}{q(\mathbf{x}^2|\mathbf{x}^1)} = \frac{c_P(\mathbf{x}^1, \mathbf{x}^2)}{c_Q(\mathbf{x}^1, \mathbf{x}^2)} \frac{p(\mathbf{x}^2)}{q(\mathbf{x}^2)} \text{ with}$$

$$c_P(\mathbf{x}^1, \mathbf{x}^2) = \frac{p(\mathbf{x}^1, \mathbf{x}^2)}{p(\mathbf{x}^1)p(\mathbf{x}^2)}$$

- Marginal discriminator
- Dependency discriminators



Factorisation of density ratio:

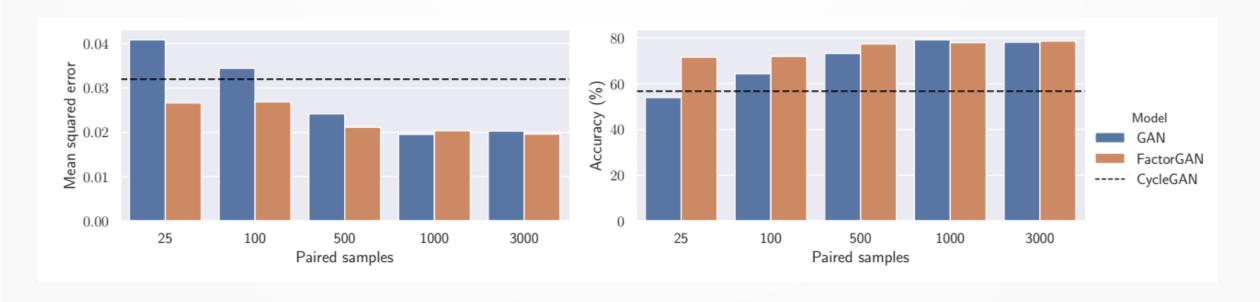
$$\frac{p(\mathbf{x}^2|\mathbf{x}^1)}{q(\mathbf{x}^2|\mathbf{x}^1)} = \frac{c_P(\mathbf{x}^1, \mathbf{x}^2)}{c_Q(\mathbf{x}^1, \mathbf{x}^2)} \frac{p(\mathbf{x}^2)}{q(\mathbf{x}^2)} \text{ with}$$

$$c_P(\mathbf{x}^1, \mathbf{x}^2) = \frac{p(\mathbf{x}^1, \mathbf{x}^2)}{p(\mathbf{x}^1)p(\mathbf{x}^2)} \text{ and } c_Q(\mathbf{x}^1, \mathbf{x}^2) = \frac{q(\mathbf{x}^1, \mathbf{x}^2)}{q(\mathbf{x}^1)q(\mathbf{x}^2)}.$$

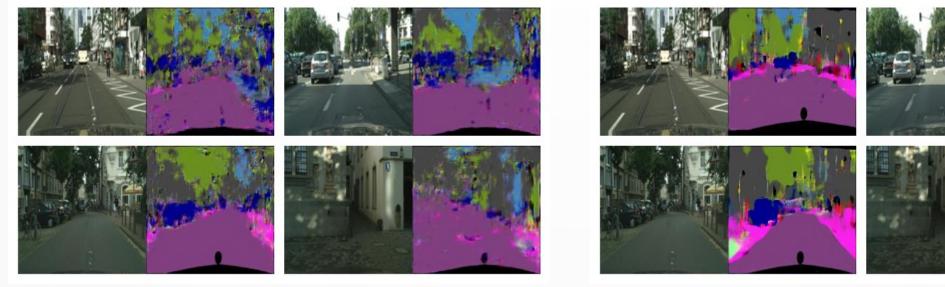
- Marginal discriminator
- Dependency discriminators

Results

Performance comparison on Cityscapes



Results



Normal GAN

FactorGAN

More experiments in the full paper

Code available at

https://github.com/f90/FactorGAN